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Hardware Acceleration Platforms 

 103 – 105 speedup over CPU required to achieve real-time 
learning, e.g. feature extraction for an HD image at 30 
frames/second 

 

 

 

 

 

 Solution: beyond CMOS with emerging non-volatile memory 

– Maximizing the parallel operation in hardware 

– Our goal: improving computing speed and energy-efficiency. Do not 
strictly follow the biological principles, such as spike-timing dependent 
plasticity (STDP)  

 

 

 

 

 

 

GPU 

10 – 30 X 

FPGA 

10 – 30 X 
CMOS ASIC 

102 – 103 X 

Beyond CMOS 

>103 X 
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Cross-point Architecture for Accelerating 
Weighted Sum and Weight Update  

 Direct mapping weight matrix in neuro-algorithms on crossbar array 

 All cells are used in parallel, no sneak path problem for read. 

 Selectors needed for minimizing write power if not fully parallel write 

Task Operations 

𝑫 ∙ 𝒁 𝐼𝑥,𝑖 = 𝐺𝑖𝑗 ∙ 𝑉𝑍,𝑗
𝑖

 

𝑫𝑻 ∙ 𝑿 𝐼𝑍,𝑗 = 𝐺𝑖𝑗 ∙ 𝑉𝑥,𝑖
𝑗

 

𝑫  
update 

∆𝐺𝑖𝑗= 𝜂 ∙ 𝑉𝑥,𝑖 ∙ 𝑉𝑧,𝑗 

Vector Z Matrix D 

Vector X 
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Resistive Devices for Offline and Online Training 

Pt
HfO2

TiN

V

-2 -1 0 1 2
1n

10n

100n

1µ

10µ

100µ

1m

 

 

C
u

rr
e
n

t 
(A

)

Voltage (V)

Abrupt set

Gradual reset

• Offline training: weights are pre-defined by software training, just 

need one-time loading to the array Conventional RRAM with 

gradual reset only is good enough 
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• Online training: weights are updated during run-time Special 

RRAM with both smooth set and reset is needed 
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Realistic Device’s Weight Update Behaviors  

• Nonlinearity in weight update 

• Device variations 

• Non-zero off-state conductance 

S. Yu, et al, “Scaling-up resistive synaptic arrays for neuro-inspired 

architecture: challenges and prospect,” IEDM 2015 

How would these non-ideal effects impact learning accuracy? 
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NeuroSim: A Simulator from Device to Algorithm 

Input:  

• Network 

structure,  

• Training/testing 

traces 

• Array type and 

technology node 

• Device type and 

non-ideal factors 

 

Output: 

• Area, 

• Latency,  

• Energy, 

• Accuracy 
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Digital RRAM
……

Analog RRAM

Non-ideal properties:
- Nonlinear weight update 
with finite number of 
states
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- Variations (Device-to-
device and cycle-to-cycle 
weight update variation, 
and read noise)

Device parameters:
- Cell height and width
- Maximum and minimum 
conductance
- Read/write voltage and 
pulse width

NVM device model

SRAM device model
SRAM
Device parameters:
- Cell height and width
- Transistor width
- Sensing voltage
- Read/write latency and 
energy

Parameters:
Network size, learning 
rate, thresholding 
value, etc.

WL

BL BLB

Key operations:
- Feed forward 
(weighted sum)
- Back propagation 
(weight update)
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Weight Precision and Weight 
Update Nonlinearity 

At least 6-bit is required for online learning, while 1 or 2-bit may work for offline 

classification. Nonlinearity significantly degrades accuracy for online learning. 
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Ternary Neural Network (TNN): Precision Reduction to 
Ternary Weight (+1,0,-1) for Feedforward 

To allow the conventional digital (1-bit) RRAM work as binary synapse  
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Impact of RRAM Finite Yield and Endurance 

For MNIST dataset, 99% bit yield and 1E4 cycling endurance is sufficient 
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Summary 

 Resistive devices can be tuned to the targeted multilevel 

(possibly by iterative programming), and offline classification is 

most suitable application scenario that achieves both low-power, 

fast and accurate recognition.   

 For online training, “analog” synapses with continuous weights 

need to overcome challenges such as nonlinear weight update, 

and further improve on/off ratio and programming speed 

 Digitalizing neural network with low-precision weights (e.g. 

ternary +1, 0, -1), allows today’s “digital” RRAM arrays for online 

training and offline classification with high accuracy, which also 

shows good resilience to limited yield and endurance.  
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